

GRP SECTIONAL WATER TANKS

About

Esinoks was established in 2003, is manufacturer of sectional water storage tanks. The factory is located in Gebze-Kocaeli. Esinoks is an engineering company and approching every project as a customer specific requirement. High technology usage throughout the manufacturing process is inevitable for Esinoks since we target to keep our products at and beyond global standards.

The challenges the world faces in addressing water availability are enomous with significant social, economic and environmental implications. Ensuring a sufficient and constant supply of water through effective water management, storage and distribution is essential in security a safe, healthy, prosperous and sustainable world.

Customer focus is a recognised value. It's not aspirational, it is real and every member of the team understands its meaning and more importantly, how they can positively influence it. Customer focus is an attitude which permeats the organisation.

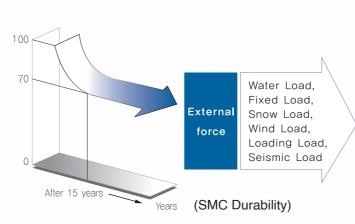
Esinoks Team concept operates to a set of core value and standards that reinforce The company's costumer promise and ensure all team members understand how important their contribution is.

What is GRP (Glass Reinforced Polyester)?

Esinoks GRP panels are hot press moulded in glass reinforced polyester resins and glassfiber reinforcemet. This panels are designed and manufactured according to BSEN 13280 standards, certified by WRAS certification.

The panels are molded at temperature up tp 150°C under strict control disciplines. The process results in strong, consistent panels which are fully cured, dimensionally accurate with sharply defined profiles and smooth surfaces on both faces.

Drilling and finishing of the panels is undetaken in a purpose built controlled area, where high technology automated drilling equipment is used to complete production to exacting tolerance levels.



COMPARISON: Esinoks GRP Panel Tanks vs Other Tank Types

	Water quality	Water tightness	Durability	Transportation	Maintance	Anti-corrosion	Installation
Esinoks GRP Tank	0	0	0	0	0	0	0
Concrete Tank	X	Δ	Δ	X	X	0	Δ
Steel Tank	Δ	0	0	Δ	X	X	X
Stainless Steel Tank	0	0	0	Δ	Δ	Δ	X
GRP Hand Lay-up Tank	Δ	0	0	X	Δ	0	0

○ : Very Good ○ : Good △ : Normal X : Poor

Structural Analysis

Design Basis: External Force < Maximum Feature / Safety Factor							
ITEM	Design Condition						
Seismic	Horizontal Seismic Kh=2/3 Vertical Kv=1/3						
Load	Designed Bases on Kh=1/3G , Horizontal Seismic Load						
	Water Level [Height in Meters] x 1,1KGF/cm² [0,01MPa]						
	Designed to stand aganist hydrostatic pressure enough						
Hydrostatic	the max, change of side wall is less than 1,0% of total						
Pressure	heigh left in Water for 48 hours.						
	60 KGF/m ² [at the base of 30 cm of snow depth]						
Snow Load	Designed to stand under 200kg/m² enough.						
	Wind Load - 255 KGF/m ² [2,55 x 10-3 MPa]						
	Designed to stand under max.						
Wind Load	60 m/sec even in case tank does not include water.						
Opacity	Under 1,1%						
Water	Under 30°C (normal) / Under 50°C (maximum)						
Temperature	(Special making in case of thermal spring)						

Structural Design of GRP Wall Panel (1m x 1m)

Physical Property

ITEM	V ALUE
Tensile Strength	105 - 85 MPa
Flexural Strength	200 - 170 MPa
Impact Strength	Kg/cm ² 75
Compressive Strength	205-210 MPa
In Plane Shear	Kg/cm ² 800
Flexural Modulus of Elasticity	10500- 8500 MPa
Barcol Hardness	40 - 50
Absorption Rate	Less than 0,1 %
Glass Fiber Content	30 %
Odor & Taste	No Defects
Light Transmission	Nil
Heavy Metals	Not Defected
Consumption of KMno4	0,3 mg/L
PH (20)	6,9
Phenol	Not Defected
Cavity	Less than 2%
Ultra-Violet Rays	Non

Hydrostatic Pressure Test Unit



Test for Panel Transformation

Test for Hydraulic pressure

Production

01Cutting SMC Sheets

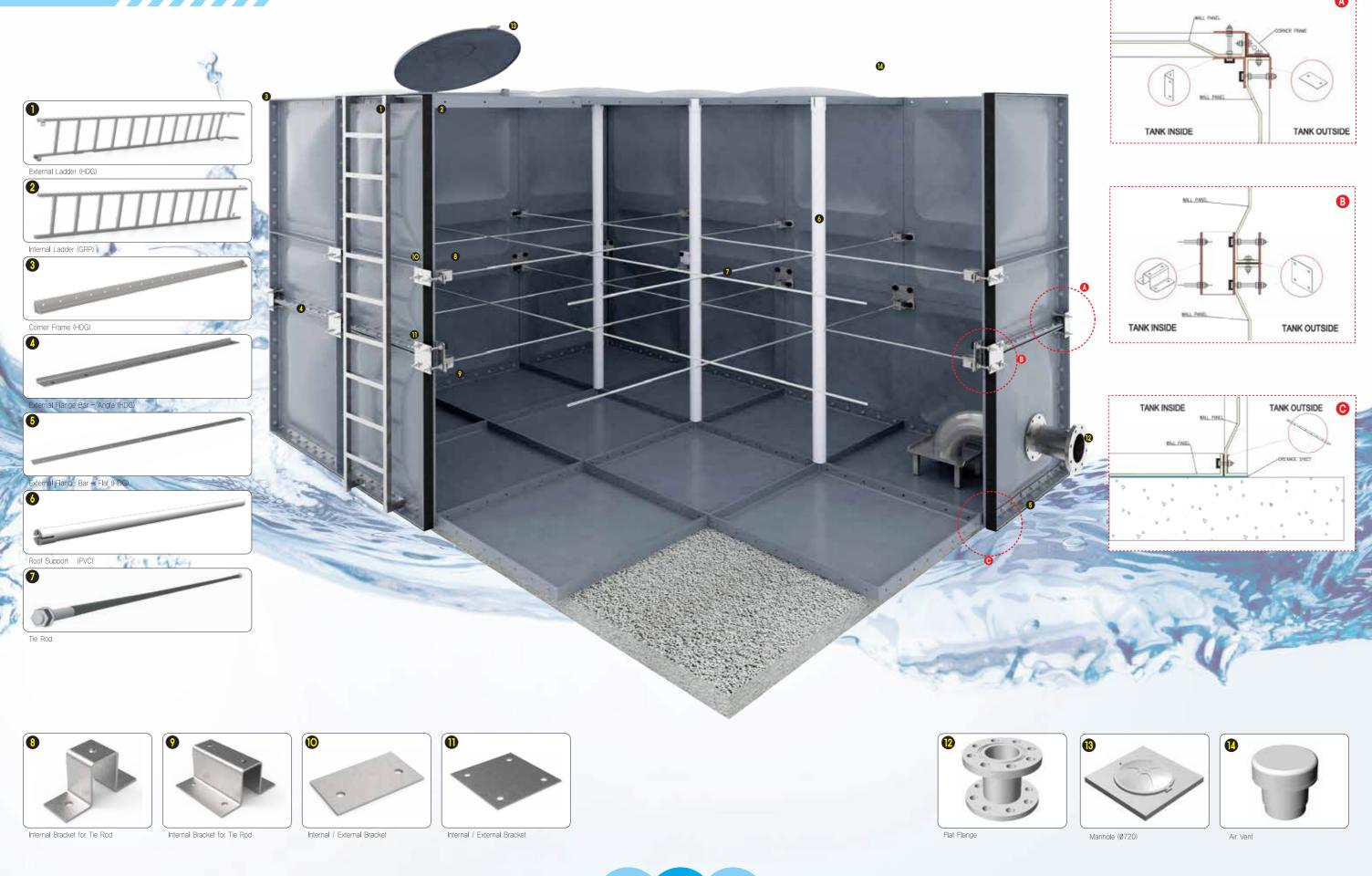
02 GRP Hot Press Molding

04 Drilling with Robotic System

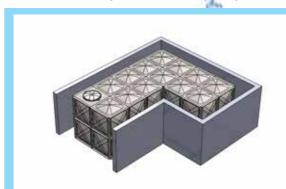
05
Steel Skid Installation on Concrete Base

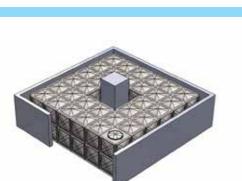
06 Installation

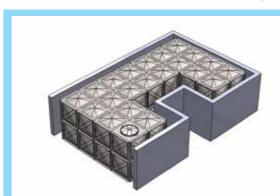
Installed GRP Water Tank



Panel Types & Dimensions 4.0 M 3.5 M 3.0 M 3.0 M 2.5 M 2.0 M 1.5 M 1.0 M 0.5 M **Roof Panels Bottom Panels** Wall Panels Menhole Panel Drain Panel Partition Flange Panel Panel

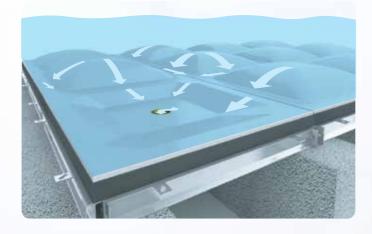

Internal Flange Base Design

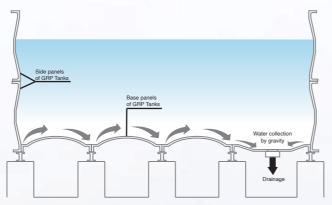



Various Geometric Tank Shapes are Available

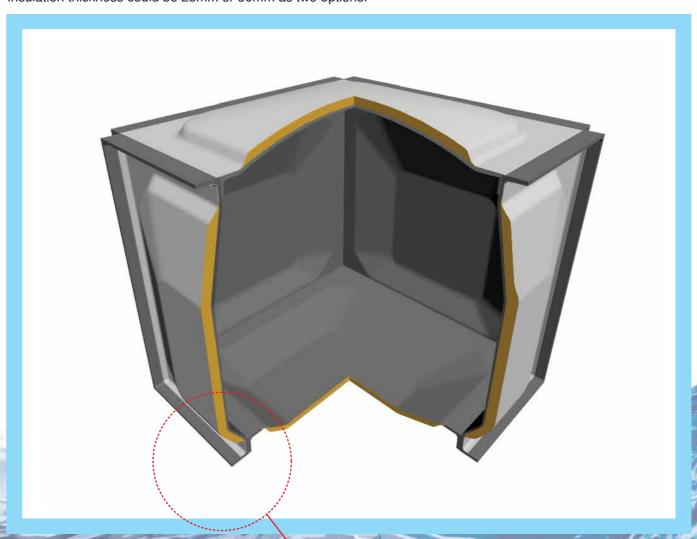
It is possible to design GRP Sectional Water Storage Tanks in various geometric forms such as "L", "T", "U" or "Center column Inside the Tank" shapes.

GRP Water Storage Tanks can be designed as to be installed concrete columns inside in case of necessity.

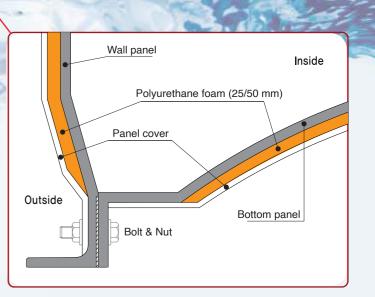




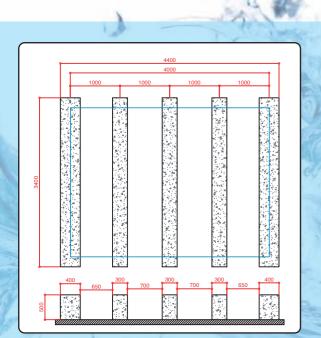
Full Drainage


The convex bottom panels with a concave drain panel allows full and fast drainage. Cleaning and maintenance of tanks become very easy.

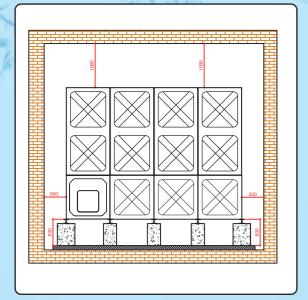
Termal Insulation


Surface of GRP panels can be insulated by polyurethane coating as an option. Insulation material doesn't contain neither CFC nor HCFC. Insulation thickness could be 25mm or 50mm as two options.

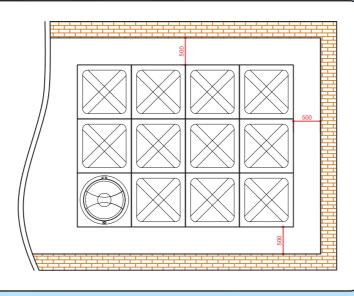
Comparison of Thermal Conductivity


	Thermal Conductivity Kcal / m,hr°C (j / m hr°C)
	37.0 (1.55 X 100,000)
	0.15 (630)
GRP (Insulated)	0.02 (84)

Tank type						
STEEL	14.3 (59.9)	24 (100)				
GRP (Non-insulated)	3.0 (13)	5 (21)				
GRP (Insulated)	0.9 (3.8)	1 (4)				



Concrete Base Foundation


- The concrete foundation should be constructed according to the designated water tank specification.
- The strength of the concrete foundation should be at least 180 kgf/cm².

Cocrete base foundation for (W)3m x (D)4m

Front view for installation space

Steel Skid A

Plan view for installation space

300 mm

♦ Steel Skid Types

Туре	Size	Steel Skid A(Main)	Size	Steel Skid B(Sub)
	500		450	*
	1000			
NPI 80	2000		950	
	500 K		450 K	
	1000 K			1
	2000 K		950 K	

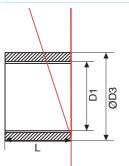
300 mm

Steel Skid B

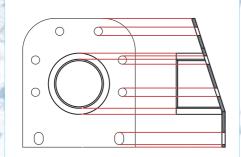
⁻ The steel skid could be designed according to customer's requirements.

Specification of Nozzles

1) Specification of Nozzles

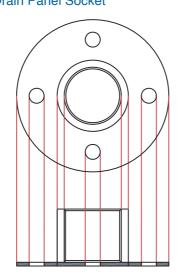

- All nozzles could be supplied according to customer's requirements.
- Recommended fittings are listed below.

Recommended Connection Size


		d.		
Water Tank Capacity(m³)	Inlet	Outlet	Overflow	Drain
1m ³ ~ 10m ³	DN25	DN50	DN50	DN25
1m ³ ~ 20m ³	DN40	DN50	DN50	DN40
1m³ ~ 50m³	DN50	DN65	DN65	DN40
1m ³ ~ 100m ³	DN65	DN80	DN80	DN50
1m ³ ~ 200m ³	DN80	DN100	DN100	DN50
1m ³ ~ 500m ³	DN100	DN125	DN125	DN80
501m³ ~	DN125	DN150	DN150	DN80

2) Socket Size

1"	1 1/4"	1 ½"	2"	2 ½"	3"
39,5	48,5	54,5	66,5	82,0	95,0
43,0	48,0	48,0	56,0	65,0	71,0
0,145	0,204	0,242	0,35	0,506	0,676
	١				



Wall Panel Socket

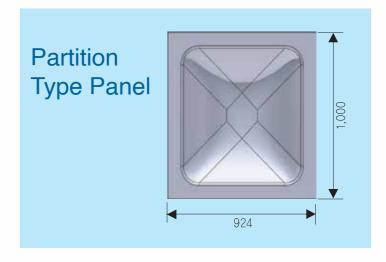
PN16

Drain Panel Socket

3) Flange Types and Properties (TS EN 1092)

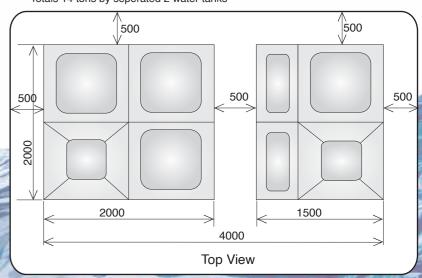
	PN10									
							Vida			
	15	22	95	14	65	4	M12	14		
	20	27,5	105	16	75	4	M12	14		
	25	34,5	115	16	85	4	M12	14		
	32	43,5	140	18	100	4	M16	18		
	40	49,5	150	18	110	4	M16	18		
	50	61,5	165	19	125	4	M16	18		
	65	77,5	185	20	145	8	M16	18		
	80	90,5	200	20	160	8	M16	18		
l	100	116	220	22	180	8	M16	18		
l	125	141,5	150	22	210	8	M16	18		
l	150	170,5	285	24	240	8	M20	22		
	200	221,5	340	24	295	8	M20	22		
	250	276,5	395	26	350	12	M20	22		
	300	327,5	445	26	400	12	M20	22		

15	22	95	14	65	4	M12	14
20	27,5	105	16	75	4	M12	14
25	34,5	115	16	85	4	M12	14
32	43,5	140	18	100	4	M16	18
40	49,5	150	18	110	4	M16	18
50	61,5	165	20	125	4	M16	18
65	77,5	185	22	145	8	M16	18
80	90,5	200	24	160	8	M16	18
100	116	235	26	190	8	M20	22
125	141,5	270	28	220	8	M24	26
150	170,5	300	30	250	8	M24	26
200	221,5	360	32	310	12	M24	26
250	276,5	425	35	370	12	M27	30

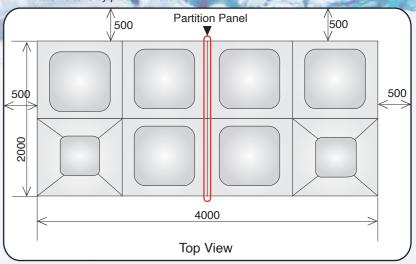

300 327,5 485 38 430 16 M27 30

D C d

Partition Panel

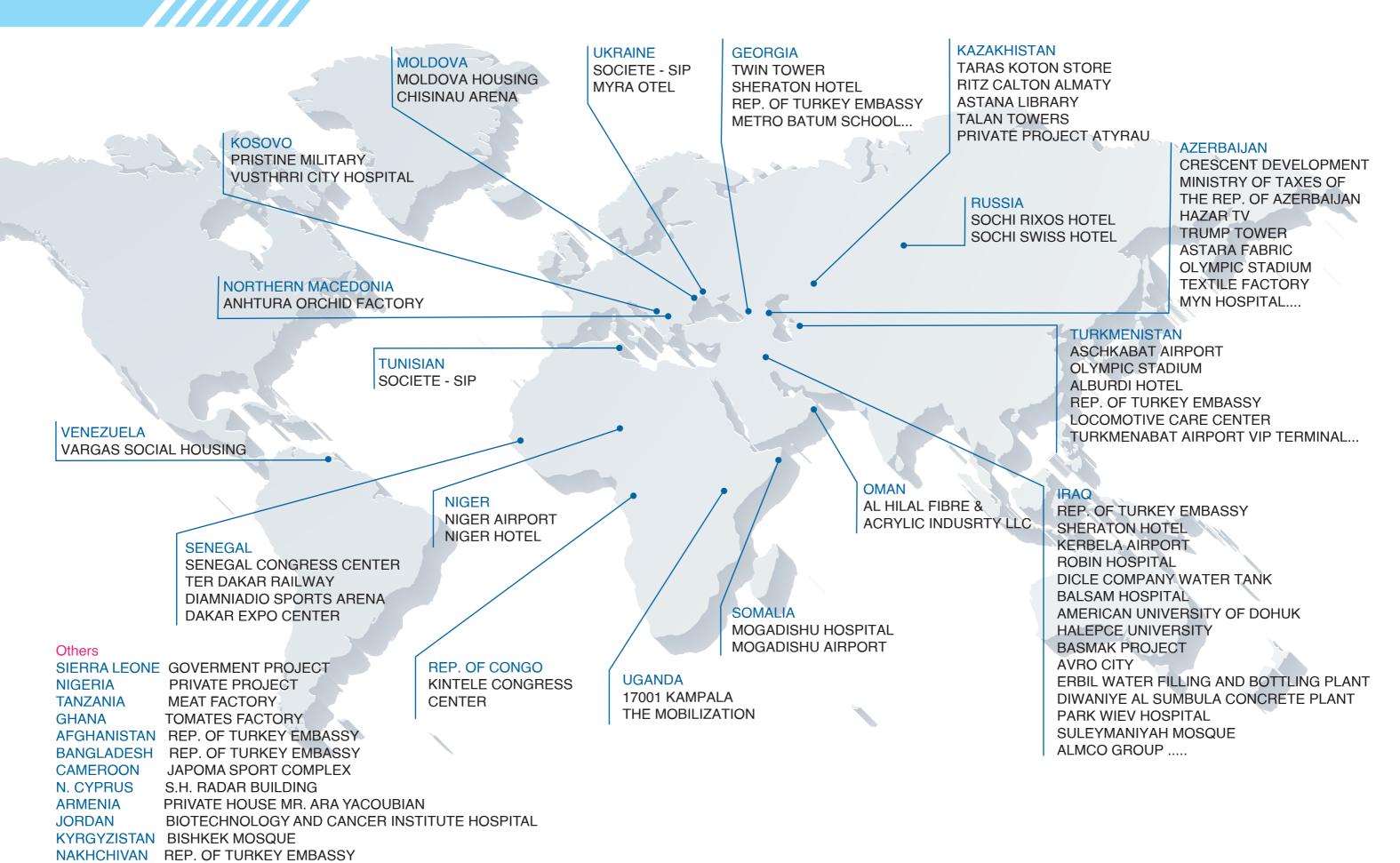

GRP Tanks could be designed to have more than one compartment.

Tanks could be divided into two or more compartments.


Two Sperate Tanks

2m(W) x 2m(L) x 2m(H) = 8 tons 2m(W) x 1.5m(L) x 2m(H) = 6 tons -Totals 14 tons by seperated 2 water tanks

One Tank with Two Compartments

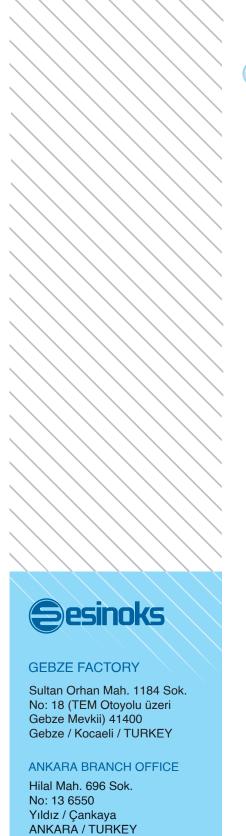

 $2m(W) \times 2m(L) \times 2m(H) + 2m(W) \times 2m(L) \times 2m(H) = 16 \text{ tons}$ -Totals 16 tons by partition water tanks

International Case Studies

SUDAN

BUSINESS CENTER

18 19


Quality Certificates

+90 262 644 03 18 www.esinoks.com.tr

esinoks@esinoks.com.tr export@esinoks.com.tr

